iMSD calculation and interpretation

In brief, the iMSD analysis on the acquired image-stack were carried out using a custom script working on MATLAB (script provided here as Supplementary File 2) or alternatively, using the dedicated routine in the SimFCS Software . In detail, first, the spatiotemporal correlation function of the fluorescence intensity fluctuations g (Eq. 1) is computed by Fourier methods:
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Where vσ2 represents the variance of particle velocity (i.e. ) and D is the diffusion coefficient (which is the same both for short and long time scales). Thus, we characterized the intracellular dynamics through Eq. 3–5. Finally, to describe more complex dynamics, as for instance, that of particles undergoing super-diffusive motion on a short time scale and confined diffusion over a larger time range, the following generalization of the aforementioned models can be introduced:
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In this case, Sizeapp (apparent) represents the average diameter of imaged organelles, i.e., the real size of the organelles convolved with instrument’s PSF.
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